
Design Patterns Study Group

Iterator Pattern

Fred Stluka
April 30, 1998

Name

• Iterator
• AKA: Cursor

Intent

• Provide a way to access the elements of an
aggregate object sequentially without
exposing its underlying representation

• An object behavioral pattern

Motivation -- Approach 1:
Direct access, no encapsulation

• Client code for Array:
for (I = 0; I < MAX; I++) {

ProcessItem (arr[I]);
}

• Client code for Linked List:
p = pList;
while (p) {

ProcessItem (*p);
p = p->Next;

}

• Client code for Binary Tree:
[more complicated, recursive algorithm]

Motivation -- Approach 1:
Direct access, no encapsulation

• Pro: Simple, familiar, easy to understand
• Con: No encapsulation of data structure to

prevent corruption
• Con: Different client code for different

data structures
• Con: Can’t change data structure without

re-coding client

Motivation -- Approach 2:
Iteration methods on Aggregate

• Aggregate class
class List {

...
void First();
void Next();
bool IsDone();
Item CurrentItem();
void AddItem(Item i);
void RemoveItem();
Item FindItem(char* pName);

}

Motivation -- Approach 2:
Iteration methods on Aggregate

• Client code (for list, array, tree, …)
pList->First();
while (!pList->IsDone()) {

ProcessItem (pList->CurrentItem());
pList->Next();

}

Motivation -- Approach 2:
Iteration methods on Aggregate

• Pro: (All pros from previous approach)
• Pro: Encapsulation of data structure
• Pro: Same client code for all data

structures (list, array, tree, ...)

Motivation -- Approach 2:
Iteration methods on Aggregate

• Con: No multiple concurrent traversals
– Searching for duplicates, etc.

• Con: No multiple types of traversal
– backward, forward, preorder, postorder, inorder

• Con: Traversal algorithm not reusable
• Con: Iteration methods intermixed with

other methods

Motivation -- Approach 3:
Separate Iterator

• Aggregate class
class List { ...

int Count();
Item Get(int pos);
void AddItem(Item i, int pos);
void RemoveItem(int pos);
Item& FindItem(char* pName); ... }

• Iterator class
class Iterator { ...

Iterator(List* list);
void First();
void Next();
bool IsDone();
Item CurrentItem(); ... }

Motivation -- Approach 3:
Separate Iterator

• Client code (for list, array, tree, …)
Iterator i(pList);
i->First();
while (!i->IsDone()) {

ProcessItem (i->CurrentItem());
i->Next();

}

Motivation -- Approach 3:
Separate Iterator

• Pro: (All pros from previous approach)
• Pro: Multiple concurrent traversals via

multiple instances of iterator
• Pro: Multiple types of traversal via

multiple iterator classes
• Pro: Traversal algorithm reusable
• Pro: Iteration methods factored out

Motivation -- Approach 3:
Separate Iterator

• Con: Iterator needs access to items
–Get, Count

• Con: Need way to associate Iterator with
Aggregate

– Parameter to Iterator constructor

• Con: How to efficiently store position?
– Pos parameter to Get, AddItem, RemoveItem, ...
– Especially recursive Aggregates

Applicability

• Access to contents of black-box aggregate
• Polymorphic iteration
– Same interface for list, tree, ...

• Multiple traversals
– Nested or concurrent
– Forward, reverse, preorder, inorder, postorder

• Complex traversal algorithm
– Reuse the algorithm on multiple data structures

Structure

Aggregate

ConcreteAggregate

ConcreteIterator

CreateIteration()

CreateIteration()

return new ConcreteIterator (this)

Iterator

First()
Next()
IsDone()
CurrentItem()

Participants

• Iterator
– Defines interface for accessing and traversing elements

• ConcreteIterator
– Maintains position and determines next element

• Aggregate
– Defines interface for creating Iterator

• ConcreteAggregate
– Creates appropriate ConcreteIterator

Collaborations

• ConcreteIterator keeps track of current item
in the aggregate and can compute the
succeeding item in the traversal.

Consequences

• Separation of data structure from traversal
• Multiple concurrent traversals
– Current position recorded in each iterator, not in the

aggregate

• Multiple traversal orders
• Traversal algorithm reusable
• Simplifies interface of Aggregate
– Moves First(), Next(), IsDone() etc. to Iterator class

Implementation:
Internal (“Passive”) Iterators

• Previous discussion covers “external”
(“active”) iterators

• “Internal” (“passive”) Iterator class
typedef bool (*FUNCPTR)(Item);
class Iterator { ...

Iterator(List* list);
bool Traverse(FUNCPTR fp);
... }

• Client code (for list, array, tree, …)
Iterator i(pList);
i->Traverse(ProcessItem);

Implementation:
Internal (“Passive”) Iterators

• Pro: Simpler to use, no risk of infinite loop
• Pro: Manages complex position well

Implementation:
Internal (“Passive”) Iterators

• Con: Hides complex position from client
• Con: Less flexible (like “for” loop)
• Con: No synchronized traversals

(MergeSort)
• Con: Info accumulated during traversal

must be stored globally or statically
(or passed as Iterator parameter)

• See also: http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt

Implementation:
Modifications During Iteration

• Items added during iteration
– Mathematical “closure” algorithm relies on hitting added

items later.
– Other algorithms rely on not hitting them.
– Prioritized list relies on hitting high priority added items

immediately, and low priority added items later.

• Items deleted during iteration
– Common mistake is to iterate list, deleting items.
– Don’t allow this to crash your iterator.

• See also: http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt

Implementation:
Polymorphic Iterators

• Polymorphic Iterators are heap-based
(dynamically allocated by CreateIterator and
passed to client).

• Memory leak if client fails to deallocate.
• Use Proxy pattern to do deallocation in

destructor of stack-based proxy class.

Implementation:
Privileged access

• How does Iterator access items in Aggregate
without making such access available to all
clients?

• “Friend” access in C++ requires knowledge
of all Iterators by Aggregate.

• “Protected” access in C++ requires Iterator to
be a subclass of Aggregate.

Implementation:
Full “iterator” vs. mere “cursor”
• Previous discussion has been on iterators
• “Cursors” are lightweight iterators that

record the current position but not the
algorithm for getting to the next item. The
Aggregate does that part.

• This dodges the problem of privileged access

Implementation:
Recursive aggregates

• How to efficiently maintain position in a
recursive aggregate like a tree? Can’t keep
pointer into guts of data structure without
special access. Can’t use a simple index
without forcing Aggregate to re-traverse to
the right node at each iteration.

Implementation:
Associating Iterator & Aggregate
• How to associate the Iterator with the

Aggregate?
– Aggregate creates Iterator of the right type and passes

itself as a parameter to the constructor.
• Con: Aggregate must know all Iterator types.

– Client creates both and passes one to the other.
• Con: Client must know appropriate pairs.

Known Uses

• Booch components, 1987 (active/passive)
• VB “For Each”, Form_Unload (passive)
• C++ STL
• Smalltalk collection classes
• Windows “RegEnumKey” API (active)
• Windows “EnumWindows” API (passive)
• All black-box aggregates

Related Patterns

• Composite
– Used to implement recursive Aggregates

• Factory Method
– Used in Aggregate to create Iterator

• Memento
– Used in Iterator to store position

Questions

• Example of PreOrderIterator on pg 68?

Design Patterns Study Group

Iterator Pattern

Fred Stluka
April 30, 1998

Name

• Iterator
• AKA: Cursor

Intent

• Provide a way to access the elements of an
aggregate object sequentially without
exposing its underlying representation

• An object behavioral pattern

Motivation -- Approach 1:
Direct access, no encapsulation

• Client code for Array:
for (I = 0; I < MAX; I++) {

ProcessItem (arr[I]);
}

• Client code for Linked List:
p = pList;
while (p) {

ProcessItem (*p);
p = p->Next;

}

• Client code for Binary Tree:
[more complicated, recursive algorithm]

Motivation -- Approach 1:
Direct access, no encapsulation

• Pro: Simple, familiar, easy to understand
• Con: No encapsulation of data structure to

prevent corruption
• Con: Different client code for different

data structures
• Con: Can’t change data structure without

re-coding client

Motivation -- Approach 2:
Iteration methods on Aggregate

• Aggregate class
class List {

...
void First();
void Next();
bool IsDone();
Item CurrentItem();
void AddItem(Item i);
void RemoveItem();
Item FindItem(char* pName);

}

Motivation -- Approach 2:
Iteration methods on Aggregate

• Client code (for list, array, tree, …)
pList->First();
while (!pList->IsDone()) {

ProcessItem (pList->CurrentItem());
pList->Next();

}

Motivation -- Approach 2:
Iteration methods on Aggregate

• Pro: (All pros from previous approach)
• Pro: Encapsulation of data structure
• Pro: Same client code for all data

structures (list, array, tree, ...)

Motivation -- Approach 2:
Iteration methods on Aggregate

• Con: No multiple concurrent traversals
– Searching for duplicates, etc.

• Con: No multiple types of traversal
– backward, forward, preorder, postorder, inorder

• Con: Traversal algorithm not reusable
• Con: Iteration methods intermixed with

other methods

Motivation -- Approach 3:
Separate Iterator

• Aggregate class
class List { ...

int Count();
Item Get(int pos);
void AddItem(Item i, int pos);
void RemoveItem(int pos);
Item& FindItem(char* pName); ... }

• Iterator class
class Iterator { ...

Iterator(List* list);
void First();
void Next();
bool IsDone();
Item CurrentItem(); ... }

Motivation -- Approach 3:
Separate Iterator

• Client code (for list, array, tree, …)
Iterator i(pList);
i->First();
while (!i->IsDone()) {

ProcessItem (i->CurrentItem());
i->Next();

}

Motivation -- Approach 3:
Separate Iterator

• Pro: (All pros from previous approach)
• Pro: Multiple concurrent traversals via

multiple instances of iterator
• Pro: Multiple types of traversal via

multiple iterator classes
• Pro: Traversal algorithm reusable
• Pro: Iteration methods factored out

Motivation -- Approach 3:
Separate Iterator

• Con: Iterator needs access to items
–Get, Count

• Con: Need way to associate Iterator with
Aggregate

– Parameter to Iterator constructor

• Con: How to efficiently store position?
– Pos parameter to Get, AddItem, RemoveItem, ...
– Especially recursive Aggregates

Applicability

• Access to contents of black-box aggregate
• Polymorphic iteration

– Same interface for list, tree, ...

• Multiple traversals
– Nested or concurrent
– Forward, reverse, preorder, inorder, postorder

• Complex traversal algorithm
– Reuse the algorithm on multiple data structures

Structure

Aggregate

ConcreteAggregate

ConcreteIterator

CreateIteration()

CreateIteration()

return new ConcreteIterator (this)

Iterator

First()
Next()
IsDone()
CurrentItem()

Participants

• Iterator
– Defines interface for accessing and traversing elements

• ConcreteIterator
– Maintains position and determines next element

• Aggregate
– Defines interface for creating Iterator

• ConcreteAggregate
– Creates appropriate ConcreteIterator

Collaborations

• ConcreteIterator keeps track of current item
in the aggregate and can compute the
succeeding item in the traversal.

Consequences

• Separation of data structure from traversal
• Multiple concurrent traversals

– Current position recorded in each iterator, not in the
aggregate

• Multiple traversal orders
• Traversal algorithm reusable
• Simplifies interface of Aggregate

– Moves First(), Next(), IsDone() etc. to Iterator class

Implementation:
Internal (“Passive”) Iterators

• Previous discussion covers “external”
(“active”) iterators

• “Internal” (“passive”) Iterator class
typedef bool (*FUNCPTR)(Item);
class Iterator { ...

Iterator(List* list);
bool Traverse(FUNCPTR fp);
... }

• Client code (for list, array, tree, …)
Iterator i(pList);
i->Traverse(ProcessItem);

Implementation:
Internal (“Passive”) Iterators

• Pro: Simpler to use, no risk of infinite loop
• Pro: Manages complex position well

Implementation:
Internal (“Passive”) Iterators

• Con: Hides complex position from client
• Con: Less flexible (like “for” loop)
• Con: No synchronized traversals

(MergeSort)
• Con: Info accumulated during traversal

must be stored globally or statically
(or passed as Iterator parameter)

• See also: http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt

Implementation:
Modifications During Iteration

• Items added during iteration
– Mathematical “closure” algorithm relies on hitting added

items later.
– Other algorithms rely on not hitting them.
– Prioritized list relies on hitting high priority added items

immediately, and low priority added items later.

• Items deleted during iteration
– Common mistake is to iterate list, deleting items.
– Don’t allow this to crash your iterator.

• See also: http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt

Implementation:
Polymorphic Iterators

• Polymorphic Iterators are heap-based
(dynamically allocated by CreateIterator and
passed to client).

• Memory leak if client fails to deallocate.
• Use Proxy pattern to do deallocation in

destructor of stack-based proxy class.

Implementation:
Privileged access

• How does Iterator access items in Aggregate
without making such access available to all
clients?

• “Friend” access in C++ requires knowledge
of all Iterators by Aggregate.

• “Protected” access in C++ requires Iterator to
be a subclass of Aggregate.

Implementation:
Full “iterator” vs. mere “cursor”
• Previous discussion has been on iterators
• “Cursors” are lightweight iterators that

record the current position but not the
algorithm for getting to the next item. The
Aggregate does that part.

• This dodges the problem of privileged access

Implementation:
Recursive aggregates

• How to efficiently maintain position in a
recursive aggregate like a tree? Can’t keep
pointer into guts of data structure without
special access. Can’t use a simple index
without forcing Aggregate to re-traverse to
the right node at each iteration.

Implementation:
Associating Iterator & Aggregate
• How to associate the Iterator with the

Aggregate?
– Aggregate creates Iterator of the right type and passes

itself as a parameter to the constructor.
• Con: Aggregate must know all Iterator types.

– Client creates both and passes one to the other.
• Con: Client must know appropriate pairs.

Known Uses

• Booch components, 1987 (active/passive)
• VB “For Each”, Form_Unload (passive)
• C++ STL
• Smalltalk collection classes
• Windows “RegEnumKey” API (active)
• Windows “EnumWindows” API (passive)
• All black-box aggregates

Related Patterns

• Composite
– Used to implement recursive Aggregates

• Factory Method
– Used in Aggregate to create Iterator

• Memento
– Used in Iterator to store position

Questions

• Example of PreOrderIterator on pg 68?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

