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Name

• Iterator
• AKA:  Cursor



Intent

• Provide a way to access the elements of an 
aggregate object sequentially without 
exposing its underlying representation

• An object behavioral pattern



Motivation -- Approach 1:
Direct access, no encapsulation

• Client code for Array:
for (I = 0; I < MAX; I++) {

ProcessItem (arr[I]);
}

• Client code for Linked List:
p = pList;
while (p) {

ProcessItem (*p);
p = p->Next;

}

• Client code for Binary Tree:
[more complicated, recursive algorithm]



Motivation -- Approach 1:
Direct access, no encapsulation

• Pro: Simple, familiar, easy to understand
• Con: No encapsulation of data structure to

prevent corruption
• Con: Different client code for different

data structures
• Con: Can’t change data structure without

re-coding client



Motivation -- Approach 2:
Iteration methods on Aggregate

• Aggregate class
class List {

...
void First();
void Next();
bool IsDone();
Item CurrentItem();
void AddItem(Item i);
void RemoveItem();
Item FindItem(char* pName);

}



Motivation -- Approach 2:
Iteration methods on Aggregate

• Client code (for list, array, tree, …)
pList->First();
while (!pList->IsDone()) {

ProcessItem (pList->CurrentItem());
pList->Next();

}



Motivation -- Approach 2:
Iteration methods on Aggregate

• Pro: (All pros from previous approach)
• Pro: Encapsulation of data structure
• Pro: Same client code for all data

structures (list, array, tree, ...)



Motivation -- Approach 2:
Iteration methods on Aggregate

• Con: No multiple concurrent traversals
– Searching for duplicates, etc.

• Con: No multiple types of traversal
– backward, forward, preorder, postorder, inorder

• Con: Traversal algorithm not reusable
• Con: Iteration methods intermixed with 

other methods 



Motivation -- Approach 3:
Separate Iterator

• Aggregate class
class List { ...

int Count();
Item Get(int pos);
void AddItem(Item i, int pos);
void RemoveItem(int pos);
Item& FindItem(char* pName); ... }

• Iterator class
class Iterator { ...

Iterator(List* list);
void First();
void Next();
bool IsDone();
Item CurrentItem(); ... }



Motivation -- Approach 3:
Separate Iterator

• Client code (for list, array, tree, …)
Iterator i(pList);
i->First();
while (!i->IsDone()) {

ProcessItem (i->CurrentItem());
i->Next();

}



Motivation -- Approach 3:
Separate Iterator

• Pro: (All pros from previous approach)
• Pro:   Multiple concurrent traversals via

multiple instances of iterator
• Pro: Multiple types of traversal via 

multiple iterator classes
• Pro: Traversal algorithm reusable
• Pro: Iteration methods factored out



Motivation -- Approach 3:
Separate Iterator

• Con: Iterator needs access to items
–Get, Count

• Con: Need way to associate Iterator with
Aggregate

– Parameter to Iterator constructor

• Con: How to efficiently store position?
– Pos parameter to Get, AddItem, RemoveItem, ...
– Especially recursive Aggregates



Applicability

• Access to contents of black-box aggregate
• Polymorphic iteration
– Same interface for list, tree, ...

• Multiple traversals 
– Nested or concurrent
– Forward, reverse, preorder, inorder, postorder

• Complex traversal algorithm
– Reuse the algorithm on multiple data structures



Structure

Aggregate

ConcreteAggregate

ConcreteIterator

CreateIteration()

CreateIteration()

return new ConcreteIterator (this)

Iterator

First()
Next()
IsDone()
CurrentItem()



Participants

• Iterator
– Defines interface for accessing and traversing elements

• ConcreteIterator
– Maintains position and determines next element

• Aggregate
– Defines interface for creating Iterator

• ConcreteAggregate
– Creates appropriate ConcreteIterator



Collaborations

• ConcreteIterator keeps track of current item 
in the aggregate and can compute the 
succeeding item in the traversal.



Consequences

• Separation of data structure from traversal
• Multiple concurrent traversals
– Current position recorded in each iterator, not in the 

aggregate

• Multiple traversal orders
• Traversal algorithm reusable 
• Simplifies interface of Aggregate
– Moves First(), Next(), IsDone() etc. to Iterator class



Implementation:
Internal (“Passive”) Iterators

• Previous discussion covers “external” 
(“active”) iterators 

• “Internal” (“passive”) Iterator class
typedef bool (*FUNCPTR)(Item);
class Iterator { ...

Iterator(List* list);
bool Traverse(FUNCPTR fp); 
... }

• Client code (for list, array, tree, …)
Iterator i(pList);
i->Traverse(ProcessItem);



Implementation: 
Internal (“Passive”) Iterators

• Pro: Simpler to use, no risk of infinite loop
• Pro: Manages complex position well



Implementation: 
Internal (“Passive”) Iterators

• Con: Hides complex position from client
• Con: Less flexible (like “for” loop)
• Con: No synchronized traversals

(MergeSort)
• Con: Info accumulated during traversal 

must be stored globally or statically
(or passed as Iterator parameter)

• See also:  http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt



Implementation:
Modifications During Iteration

• Items added during iteration
– Mathematical “closure” algorithm relies on hitting added 

items later.
– Other algorithms rely on not hitting them.
– Prioritized list relies on hitting high priority added items 

immediately, and low priority added items later.

• Items deleted during iteration
– Common mistake is to iterate list, deleting items.
– Don’t allow this to crash your iterator.

• See also:  http://sw-eng.falls-church.va.us/AdaIC/docs/style-guide/83style/style-t.txt



Implementation:
Polymorphic Iterators

• Polymorphic Iterators are heap-based 
(dynamically allocated by CreateIterator and 
passed to client).

• Memory leak if client fails to deallocate.
• Use Proxy pattern to do deallocation in 

destructor of stack-based proxy class.



Implementation:
Privileged access

• How does Iterator access items in Aggregate 
without making such access available to all 
clients?

• “Friend” access in C++ requires knowledge 
of all Iterators by Aggregate.

• “Protected” access in C++ requires Iterator to 
be a subclass of Aggregate. 



Implementation:
Full “iterator” vs. mere “cursor”
• Previous discussion has been on iterators 
• “Cursors” are lightweight iterators that 

record the current position but not the 
algorithm for getting to the next item.  The 
Aggregate does that part.

• This dodges the problem of privileged access 



Implementation:
Recursive aggregates

• How to efficiently maintain position in a 
recursive aggregate like a tree?  Can’t keep 
pointer into guts of data structure without 
special access.  Can’t use a simple index 
without forcing Aggregate to re-traverse to 
the right node at each iteration.



Implementation:
Associating Iterator & Aggregate
• How to associate the Iterator with the 

Aggregate?
– Aggregate creates Iterator of the right type and passes 

itself as a parameter to the constructor.
• Con: Aggregate must know all Iterator types.

– Client creates both and passes one to the other.
• Con: Client must know appropriate pairs.



Known Uses

• Booch components, 1987 (active/passive)
• VB “For Each”, Form_Unload (passive)
• C++ STL
• Smalltalk collection classes
• Windows “RegEnumKey” API (active)
• Windows “EnumWindows” API (passive)
• All black-box aggregates



Related Patterns

• Composite
– Used to implement recursive Aggregates

• Factory Method
– Used in Aggregate to create Iterator

• Memento
– Used in Iterator to store position



Questions

• Example of PreOrderIterator on pg 68?
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